Soalnomor 1 simak ui matematika dasar KD1 tahun 2014 tergolong mudah karena hanya menggunakan konsep turunan pecahan, sehingga saya yakin setiap peserta bisa mengerjakan soal ini. Untuk nomor 2 menggunakan konsep fungsi komposisi, untuk mengerjakannya butuh ketelitian dan trik. Konsep peluang juga dipakai untuk soal nomor 3 dan 4, akan tetapi soal
Selamat datang kembali.. bersama saya di Kali ini yang akan saya bagi adalah Soal dan Pembahasan Matematika Dasar SIMAK UI 2018 Kode 638. Soalnya saya peroleh dari teman saya guru yang baik yaitu Bapak Insan Abdul Syukur dan saya sangat berterima kasih kepada beliau yang bersedia menyedekahkan paket datanya untuk mengirimkan foto soal ini. Sahabat-sahabatku mari kita belajar bersama, jika ada solusi atau pembahasan yang kurang tepat saya berharap kritik dan koreksinya di kolom komentar atau silahkan japri saya melalui Telegram. Matematika Dasar SIMAK UI 2018 No. 1 Hasil perkalian semua solusi bilangan real yang memenuhi $\sqrt[3]{x}=\frac{2}{1+\sqrt[3]{x}}$ adalah … A. -8 B. -6 C. 4 D. 6 E. 8 Pembahasan $\sqrt[3]{x}=\frac{2}{1+\sqrt[3]{x}}$, misal $y=\sqrt[3]{x}$, maka $y=\frac{2}{1+y}$ ${{y}^{2}}+y=2$ ${{y}^{2}}+y-2=0$ $y+2y-1=0$ $y=-2$ atau $y=1$ $\sqrt[3]{x}=-2\Leftrightarrow {{x}_{1}}=-8$ $\sqrt[3]{x}=1\Leftrightarrow {{x}_{2}}=1$ ${{x}_{1}}.{{x}_{2}}= Kunci A Matematika Dasar SIMAK UI 2018 No. 2 Jika $2+{}^{2}\log x=3+{}^{3}\log y={}^{6}\log x-4y$, nilai $\frac{1}{2y}-\frac{2}{x}$ adalah … A. 36 B. 54 C. 81 D. 108 E. 216 Pembahasan $2+{}^{2}\log x=a$ ${}^{2}\log x=a-2\Leftrightarrow x={{2}^{a-2}}$ $3+{}^{3}\log y=a$ ${}^{3}\log y=a-3\Leftrightarrow y={{3}^{a-3}}$ ${}^{6}\log x-4y=a\Leftrightarrow x-4y={{6}^{a}}$ $\frac{1}{2y}-\frac{2}{x}=\frac{x-4y}{2xy}$ $=\frac{{{6}^{a}}}{{{ $=\frac{{{6}^{a}}}{2.\frac{{{2}^{a}}}{{{2}^{2}}}.\frac{{{3}^{a}}}{{{3}^{3}}}}$ $=\frac{{{6}^{a}}}{\frac{{{6}^{a}}}{54}}$ = 54 Kunci B Matematika Dasar SIMAK UI 2018 No. 3 Jika $p$ dan $q$ adalah akar-akar persamaan ${{x}^{2}}+x-4=0$, nilai $5{{p}^{2}}+4{{q}^{2}}+p$ adalah … A. 20 B. 28 C. 32 D. 40 E. 44 Pembahasan ${{x}^{2}}+x-4=0$, akar-akar $p$ dan $q$, maka $p+q=\frac{-b}{a}=-1$, dan $ Untuk $x=p$, maka ${{x}^{2}}+x-4=0$ menjadi ${{p}^{2}}+p-4=0\Leftrightarrow {{p}^{2}}+p=4$ $5{{p}^{2}}+4{{q}^{2}}+p=4{{p}^{2}}+4{{q}^{2}}+{{p}^{2}}+p$ $=4{{p}^{2}}+{{q}^{2}}+{{p}^{2}}+p$ $=4\left[ {{p+q}^{2}}-2pq \right]+4$ $=4\left[ {{-1}^{2}}-2.-4 \right]+4$ = 40 Kunci D Matematika Dasar SIMAK UI 2018 No. 4 Jika a – 3 = -b – 4 = -c – 5 = d + 6 = e + 7 = a – b – c + d + e + 8, maka a – b – c + d + e = … A. $-\frac{39}{4}$ B. $-\frac{1}{4}$ C. $-\frac{7}{3}$ D. $\frac{15}{4}$ E. $\frac{39}{4}$ Pembahasan $a-3$=$-b-4$=$-c-5$=$d+6$=$e+7$=$a-b-c+d+e+8$ kurangkan dengan 8, maka diperoleh $a-11$=$-b-12$=$-c-13$=$d-2$=$e-1$=$a-b-c+d+e$=$x$ Misal $a-b-c+d+e=x$ $a-11=x$ ... pers 1 $-b-12=x$ … pers 2 $-c-13=x$ … pers 3 $d-2=x$ … pers 4 $e-1=x$ … pers 5 Jumlahkan seluruh persamaan, maka diperoleh $a-11$ + $-b-12$ + $-c-13$ + $d-2$ + $e-1$=$5x$ $a-b-c+d+e-39=5x$ $x-39=5x$ $-4x=39$ $x=-\frac{39}{4}$ $a-b-c+d+e=-\frac{39}{4}$ Kunci A Matematika Dasar SIMAK UI 2018 No. 5 Himpunan penyelesaian dari pertidaksamaan $\sqrt{{{x}^{2}}-4}\le 3-x$ adalah … A. $\left\{ x\in Rx\le -2 \right.$ atau $2\le x\le \frac{13}{6}\}$ B. $\left\{ x\in Rx\le -2 \right.$ atau $2\le x\}$ C. $\left\{ x\in R-2\le x\le \frac{13}{6} \right\}$ D. $\left\{ x\in Rx\le \frac{13}{6} \right\}$ E. $\left\{ x\in R2\le x\le \frac{13}{6} \right\}$ Pembahasan i Syarat $\sqrt{{{x}^{2}}-4}\le 3-x$ ${{x}^{2}}-4\ge 0$ $x+2x-2\ge 0$ $x=-2$ atau $x=2$ $x\le -2$ atau $x\ge 2$ ii Solusi $\sqrt{{{x}^{2}}-4}\le 3-x$, menentukan x pembuat nol. ${{x}^{2}}-4={{\left 3-x \right}^{2}}$ ${{x}^{2}}-4=9-6x+{{x}^{2}}$ $6x=13\Leftrightarrow x=\frac{13}{6}$ Yang memenuhi $\sqrt{{{x}^{2}}-4}\le 3-x$ adalah $x\le \frac{13}{6}$ Dari i dan ii diperoleh himpunan penyelesaiannya adalah $\left\{ x\in Rx\le -2 \right.$ atau $2\le x\le \frac{13}{6}\}$. Kunci A Matematika Dasar SIMAK UI 2018 No. 6 Sebuah barisan geometri terdiri dari 3 suku mempunyai suku pertama $\frac{1}{2}$. Jika suku kedua ditambah 3 dan suku ketiga ditambah 4, maka barisan tersebut menjadi barisan aritmetika. Suku kedua terbesar yang mungkin dari barisan aritmetika tersebut adalah … A. $\frac{1}{2}$ B. $\frac{3}{2}$ C. $\frac{5}{2}$ D. $\frac{7}{2}$ E. $\frac{9}{2}$ Pembahasan Barisan Geometri ${{U}_{n}}=a{{r}^{n-1}}$; $a=\frac{1}{2}$, maka ketiga suku tersebut adalah $\frac{1}{2}$, $\frac{1}{2}r$, $\frac{1}{2}{{r}^{2}}$ Barisan aritmetika $\frac{1}{2}$, $\frac{1}{2}r+3$, $\frac{1}{2}{{r}^{2}}+4$ $2{{U}_{2}}={{U}_{1}}+{{U}_{3}}$ $2\left \frac{1}{2}r+3 \right=\frac{1}{2}+\left \frac{1}{2}{{r}^{2}}+4 \right$ $r+6=\frac{1}{2}+\frac{1}{2}{{r}^{2}}+4$ $2r+12=1+{{r}^{2}}+8$ ${{r}^{2}}-2r-3=0$ $r-3r+1=0$ $r=3$ atau $r=-1$ Agar suku kedua barisan aritmetika $\frac{1}{2}r+3$ terbesar maka $r=3$, diperoleh ${{U}_{2}}=\frac{1}{2}r+3\Leftrightarrow {{U}_{2}}=\frac{1}{2}.3+3=\frac{9}{2}$ Kunci E Matematika Dasar SIMAK UI 2018 No. 7 Jika $A=\left[ \begin{matrix} 1 & x \\ 1 & 4 \\ \end{matrix} \right]$ adalah matriks yang mempunyai invers, rata-rata dari nilai-nilai $x$ yang memenuhi $\det \left -\frac{1}{3}A \right=\det \left 3{{A}^{-1}} \right$ adalah … A. 1 B. 4 C. 5 D. 8 E. 10 Pembahasan $A=\left[ \begin{matrix} 1 & x \\ 1 & 4 \\ \end{matrix} \right] \Rightarrow A=4-x$ $\det \left -\frac{1}{3}A \right=\det \left 3{{A}^{-1}} \right$ ${{\left -\frac{1}{3} \right}^{2}}A={{3}^{2}}.\frac{1}{A}$ $\frac{4-x}{9}=\frac{9}{4-x}$ $16-8x+{{x}^{2}}=81$ ${{x}^{2}}-8x-65=0$ $x-13x+5=0$ ${{x}_{1}}=13$ atau ${{x}_{2}}=-5$ Maka $\frac{{{x}_{1}}.{{x}_{2}}}{2}=\frac{13+-5}{2}=4$ Kunci B Matematika Dasar SIMAK UI 2018 No. 8 Daerah R persegipanjang yang memiliki titik sudut $-1,1$, $4,1$, $-1,-5$, dan $4,-5$. Suatu titik akan dipilih dari R. Probabilitas akan terpilih titik yang berada di atas garis $y=\frac{3}{2}x-5$ adalah … A. $\frac{1}{5}$ B. $\frac{2}{5}$ C. $\frac{3}{5}$ D. $\frac{1}{4}$ E. $\frac{3}{4}$ Pembahasan Perhatikan ilustrasi berikut Titik-titik yang berada di atas $y=\frac{3}{2}x-5$ adalah luas ABED AB = 5 satuan, BC = 6 satuan, maka Luas ABCD = 5 x 6 = 30 Luas BCE = $\frac{1}{2}.EC\times BC=\frac{1}{2}\times 4\times 6=12$ Luas ABED = Luas ABCD – Luas BCE = 18 Probabilitas akan terpilih titik yang berada di atas garis $y=\frac{3}{2}x-5$ adalah $=\frac{[ABED]}{[ABCD]}=\frac{18}{30}=\frac{3}{5}$ Kunci C Matematika Dasar SIMAK UI 2018 No. 9 Diketahui $f$ adalah fungsi kuadrat yang mempunyai garis singgung $y=-x+1$ di titik $x=-1$. Jika $f'1=3$ maka $f4$ = …. A. 11 B. 12 C. 14 D. 17 E. 22 Pembahasan Misal $fx=a{{x}^{2}}+bx+c$ $f'x=2ax+b$, gradien garis singgung di titik $x=-1$ adalah $m=f'1$ $m=-2a+b$, sama dengan gradien $y=-x+1$, maka $-2a+b=-1$ … pers 1 $f'1=3\Leftrightarrow 2a+b=3$… 2 $-2a+b=-1$ $2a+b=3$ - - $-4a=-4\Leftrightarrow a=1,b=1$ $fx=a{{x}^{2}}+bx+c$ $y={{x}^{2}}+x+c$ garis singgung $y=-x+1$ di titik $x=-1$, maka $y=2$ $2={{-1}^{2}}-1+c\Leftrightarrow c=2$ $fx={{x}^{2}}+x+2\Leftrightarrow f4={{4}^{2}}+4+2=22$ Kunci E Matematika Dasar SIMAK UI 2018 No. 10 Misalkan dalam sebuah kotak terdapat 10 bola yang terdiri dari bola warna merah dan biru, kemudian diambil 2 secara bersamaan. Jika banyak cara mengambil bola merah dan biru adalah 9, selisih banyaknya bola merah dan biru adalah … A. 4 B. 5 C. 6 D. 7 E. 8 Pembahasan Banyak bola merah = m Banyak bola biru = b Maka m + b = 10 … persamaan 1 Banyak cara mengambil 1 merah dan 1 biru adalah $C_{1}^{m}\times C_{1}^{b}=9\Leftrightarrow m\times b=9$ … persamaan 2 Dari persamaan 1 dan 2 maka diperoleh $m=9,b=1$ atau $m=1,b=9$. Jadi selisihnya = 9-1 = 8 Kunci E Matematika Dasar SIMAK UI 2018 No. 11 Diberikan sebuah segitiga siku-siku ABC yang siku-siku di B dengan AB = 6 dan BC = 8. Titik M, N berturut-turut berada pada sisi AC sehingga AM MN NC = 1 2 3. Titik P dan Q secara berurutan berada pada sisi AB dan BC sehingga AP tegak lurus PM dan BQ tegak lurus QN. Luas segilima PMNQB adalah … A. $21\frac{1}{3}$ B. $20\frac{1}{3}$ C. $19\frac{1}{3}$ D. $18\frac{1}{3}$ E. $17\frac{1}{3}$ Pembahasan Perhatikan gambar berikut! $AB=6,BC=8$, maka luas ABC = 24 Misal $AM=a\Rightarrow MN=2a,NC=3a$, maka $\Delta APM\approx \Delta NQC\approx \Delta ABC$, dengan perbandingan luas segitiga yang sebangun kita peroleh $[APM][ABC]=A{{M}^{2}}A{{C}^{2}}$ $\frac{[APM]}{[ABC]}=\frac{{{a}^{2}}}{{{6a}^{2}}}$ $[APM]=\frac{1}{36}\times [ABC]$ $[APM]=\frac{1}{36}\times 24=\frac{2}{3}$ $[NQC][ABC]=N{{C}^{2}}A{{C}^{2}}$ $\frac{[NQC]}{[ABC]}=\frac{{{3a}^{2}}}{{{6a}^{2}}}$ $[NQC]=\frac{1}{4}\times [ABC]$ $[NQC]=\frac{1}{4}\times 24=6$ $[PMNQB]=[ABC]-[APM]-[NQC]$ $[PMNQB]=24-\frac{2}{3}-6=17\frac{1}{3}$ Kunci E Matematika Dasar SIMAK UI 2018 No. 12 Jika ${{g}^{-1}}x+1=2x-1$ dan ${{\left g\circ {{f}^{-1}} \right}^{-1}}x+1=4{{x}^{2}}-2$, nilai $f2$ adalah … A. 5 B. 7 C. 8 D. 11 E. 13 Pembahasan ${{\left g\circ {{f}^{-1}} \right}^{-1}}x+1=4{{x}^{2}}-2$ $\left f\circ {{g}^{-1}} \rightx+1=4{{x}^{2}}-2$ $f\left {{g}^{-1}}x+1 \right=4{{x}^{2}}-2$ $f\left 2x-1 \right=4{{x}^{2}}-2$ Ambil nilai $x=\frac{3}{2}$, maka $f\left 2x-1 \right=4{{x}^{2}}-2$ $f\left 2.\frac{3}{2}-1 \right=4.{{\left \frac{3}{2} \right}^{2}}-2$ $f2=7$ Kunci B Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15. Petunjuk C yaitu pilihlah A. Jika 1, 2, 3 benar. B. Jika 1 dan 3 benar. C. Jika 2 dan 4 benar. D. Jika hanya 4 yang benar. E. Jika semuanya benar. Matematika Dasar SIMAK UI 2018 No. 13 Jika $fx=\sqrt{x-4}$ dan $gx={{x}^{2}}$, maka … 1 daerah asal fungsi $f$ adalah $\left\{ x\in Rx\ge 0 \right\}$ 2 derah asal fungsi $g$ adalah $\left\{ x\in Rx\ge 0 \right\}$ 3 daerah asal fungsi $f\circ g$ adalah $\left\{ x\in R-2\le x\le 2 \right\}$ 4 daerah asal fungsi $g\circ f$ adalah $\left\{ x\in Rx\ge 4 \right\}$ Pembahasan Pernyataan 1 SALAH, sebab daerah asal fungsi $f$ adalah $\left\{ x\in Rx\ge 4 \right\}$, karena pernyataan 1 salah maka opsi yang mungkin adalah C dan D, selanjutnya kita cek pernyataan 2. Pernyataan 2 SALAH, sebab daerah asal fungsi $g$ adalah $\left\{ x\in R \right\}$, maka opsi yang kita pilih adalah D. Kunci D Matematika Dasar SIMAK UI 2018 No. 14 Jika $fx={{x-1}^{\frac{2}{3}}}$, maka … 1 $f$ terdefinisi di $x\ge 0$ 2 $f'2=\frac{2}{3}$ 3 $y=\frac{2}{3}x-\frac{1}{3}$ adalah garis singgung di $x=2$ 4 $f$ selalu mempunyai turunan di setiap titik. Pembahasan Pernyataan 1 BENAR $fx={{x-1}^{\frac{2}{3}}}$ $f'x=\frac{2}{3}{{x-1}^{\frac{2}{3}-1}}$ $f'x=\frac{2}{3\sqrt[3]{x-1}}$ $m=f'2=\frac{2}{3\sqrt[3]{2-1}}=\frac{2}{3}$ , maka 2 BENAR ${{x}_{1}}=2\Rightarrow f2={{2-1}^{\frac{2}{3}}}\Rightarrow {{y}_{1}}=1$ Persamaan garis singgung kurva di 2, 1 adalah $y-1=\frac{2}{3}x-2$ $y=\frac{2}{3}x-\frac{4}{3}+1\Leftrightarrow y=\frac{2}{3}x-\frac{1}{3}$, maka 3 BENAR $f'x=\frac{2}{3\sqrt[3]{x-1}}$ selalu mempunyai turunan di setiap titik, maka 4 SALAH, sebab untuk $x = 1$ tidak terdefinisi f'x. Kunci A 1, 2, dan 3 benar. Matematika Dasar SIMAK UI 2018 No. 15 Rata-rata dari tiga buah bilangan adalah 6 lebihnya dibandingkan dengan bilangan terkecil dan 12 kurangnya dibandingkan dengan bilangan terbesar. Jika median ketiga bilangan tersebut adalah 6, maka … 1 jangkauannya adalah 18 2 simpangan rata-ratanya adalah 8. 3 variansinya adalah 108 4 modusnya adalah 6Pembahasan Misal a, b, dan c ketiga bilangan itu, dengan $a < b < c$ mediannya $b=6$ maka $\frac{a+b+c}{3}=a+6$ $-2a+b+c=18$ $-2a+6+c=18$ $-2a+c=12$ … persamaan 1 $\frac{a+b+c}{3}=c-12$ $a+b-2c=-36$ $a+6-2c=-36$ $a-2c=-42$ … persamaan 2 Dengan metode eliminasi dari persamaan 1 dan 2 $\left. \begin{align} & -2a+c=12 \\ & a-2c=-42 \\ \end{align} \right\begin{matrix} \times 2 \\ \times 1 \\ \end{matrix}$ $-4a+2c=24$ $a-2c=-42$ - + $-3a=-18\Rightarrow a=6$ $a=6$ substitusi ke persamaan 1, maka $-2a+c=12\Leftrightarrow c=24$, Ketiga bilangan itu adalah 6, 6, 24, $\bar{x}=12$ Jangkauan = 24 – 6 = 18 …. 1 BENAR $SR=\frac{6-12+6-12+24-12}{3}$ $SR=\frac{6+6+12}{3}=8$ … 2 BENAR Varians $\sigma $ $\sigma =\frac{{{6-12}^{2}}+{{6-12}^{2}}+{{24-12}^{2}}}{3}$ $\sigma =\frac{36+36+144}{3}=72$ … 3 SALAH Modus = 6 … 4 BENAR Kunci C Baca Juga Soal dan Pembahasan Matematika IPA SIMAK UI 2018. Soal dan Pembahasan Matematika Dasar SIMAK UI 2017. Soal dan Pembahasan Matematika IPA SIMAK UI 2017. Soal dan Pembahasan Matematika Dasar SIMAK UI 2016. Soal dan Pembahasan Matematika Dasar SIMAK UI 2015. Subscribe and Follow Our Channel
PembahasanSIMAK UI 2018 | Matematika Dasar | Bentuk Pangkat dan LogaritmaPembahasan SIMAK UI 2018 | Matematika Dasar | Bentuk Pangkat dan LogaritmaPembahasa
Siapa nih yang lagi ngambis buat masuk UI? Nah, buat Sobat Zenius, gue mau ngajak elo untuk mengulas pembahasan soal SIMAK UI Matematika nih. Yuk, baca artikel ini sampai selesai! Nggak bisa dipungkiri kalau materi matematika dasar SIMAK UI & matematika IPA, menjadi materi yang paling diantisipasi oleh sebagian besar peserta SIMAK UI. Elo berasa harus latihan ekstra untuk materi yang satu ini. Selain materi matematika dasar SIMAK UI dan matematika IPA, elo tau gak sih, materi apa aja yang diujikan di SIMAK UI? Kalau belum tau, tenang aja gue bakalan ngasih sedikit info mengenai materi apa saja yang harus dipelajari, di antaranya Kemampuan Dasar KD Matematika Dasar, Bahasa Indonesia, dan Bahasa InggrisKemampuan IPA KA Matematika IPA, Fisika, Kimia, BiologiKemampuan IPS KS Ekonomi, Sejarah, Geografi, Sosiologi “Aduh… kok ada matematika, sih?” Tenang-tenang, walau nanti elo bakalan menjawab soal-soal Matematika dasar dan bagi yang mengambil jurusan SAINTEK juga akan jawab soal-soal Matematika IPA, elo gak perlu merasa khawatir. Kenapa? Karena di artikel kali ini, gue bakalan memberikan contoh soal dan pembahasan SIMAK UI Matematika. Jadi, simak terus ya artikel ini yang akan membahas kumpulan soal Matematika SIMAK UI. Materi soal SIMAK UI Arsip Zenius Materi Matematika Dasar SIMAK UI Contoh Soal dan Pembahasan SIMAK UI Matematika DasarMateri Matematika IPA SIMAK UI Contoh Soal dan Pembahasan SIMAK UI Matematika IPA Sebelum gue bahas contoh soal dan pembahasan SIMAK UI Matematika dasar, ada baiknya, elo tau materi apa saja yang perlu dipelajari nantinya. Jadi, ada beberapa materi Matematika dasar SIMAK UI yang perlu elo pelajari seperti logaritma, persamaan kuadrat, pertidaksamaan, barisan dan deret, turunan, dan peluang. Oleh karena itu, Sobat Zenius, perlu banget untuk menguasai konsep-konsep dari materi tersebut, ya! Perlu elo ketahui, materi-materi tersebut akan muncul dalam beberapa soal SIMAK UI Matematika, yang biasanya sih terdiri dari 15 soal. Jadi diharapkan elo benar-benar paham ya soalnya ini akan masuk sebagai soal kemampuan dasar SIMAK UI. Karena elo udah tahu apa saja materi yang biasanya muncul dalam soal-soal Matematika dasar, sekarang langsung saja disimak soal dan pembahasan SIMAK UI. Check it out! Gue saranin biar elo bisa belajar dimana aja dan kapan aja, langsung instal aja aplikasi Zenius di HP elo. Di situ elo bisa cek contoh-contoh soal dan pembahasan materi yang bikin elo auto ngerti. Buruan klik di bawah ini ya! Download Aplikasi Zenius Fokus UTBK untuk kejar kampus impian? Persiapin diri elo lewat pembahasan video materi, ribuan contoh soal, dan kumpulan try out di Zenius! Contoh Soal dan Pembahasan SIMAK UI Matematika Dasar Oke, pada bagian ini gue bakalan tulis 5 contoh soal dan pembahasan SIMAK UI Matematika dasar. Nah, contoh soal-soal ini tentunya gue ambil dari latihan-latihan soal di Zenius blog dan channel YouTube Zenius. Udah penasaran, nih? Yuk, coba bareng! Pembahasan Jawabannya adalah d. 200 Pembahasan Pembahasan Pembahasan Jawabannya adalah e. Tak terhingga Pembahasan Gimana nih, Sobat Zenius? Udah mulai dapat gambaran belum untuk soal dan pembahasan SIMAK UI, materi Matematika dasar? Kalau masih mau latihan soal lainnya, elo boleh banget akses Live Class Zenius di YouTube, GRATIS, dengan mengakses Zenius SIMAK UI. Oke… karena gue udah bahas mengenai contoh soal Matematika dasar, gue bakalan lanjut ke materi dan pembahasan contoh soal-soal Matematika IPA SIMAK UI. Apa aja, sih? Simak di bawah ini! Materi Matematika IPA SIMAK UI Untuk Matematika IPA, ada beberapa materi yang tercakup antara lain trigonometri, turunan, dimensi tiga, logaritma, limit, dan barisan dan deret. Jadi, untuk elo yang ambil jurusan SAINTEK, wajib belajar dan paham mengenai materi-materi ini. Sama seperti jumlah soal Matematika dasar SIMAK UI, elo juga akan jawab 15 soal Matematika IPA. Nah, untuk pemanasan dan persiapan elo nanti, di bawah ini merupakan kumpulan soal dan pembahasan SIMAK UI Matematika IPA. Check it out! Contoh Soal dan Pembahasan SIMAK UI Matematika IPA Setelah tahu apa saja materi dari Matematika IPA untuk SIMAK UI, gue bakalan lanjut bahas 5 contoh soal Matematika IPA SIMAK UI dan pembahasan. Perlu elo tahu nih, kalau contoh soal-soal ini tentunya gue ambil dari latihan-latihan soal dari blog Zenius SIMAK UI dan channel YouTube Zenius. Oke, kayaknya gue harus tantang elo, deh, jadi sebelum melihat pembahasannya, coba elo jawab sendiri soal yang gue tulis dan setelah itu elo bisa liat jawaban dan cara elo udah benar atau belum. Selamat mencoba! Pembahasan Pembahasan Pembahasan Oke, Sobat Zenius, jadi itu 5 contoh soal SIMAK UI Matematika IPA. Semoga bermanfaat, ya! Oh ya, kalau elo masih mau latihan soal mengenai Matematika IPA, silakan akses Live Class Zenius dengan klik di sini. Gue harap dari contoh soal SIMAK UI di atas elo sedikit ada gambaran apa yang harus elo hadapi nanti. Tapi tentunya elo udah ada persiapan dong ya untuk menyambut SIMAK UI ini. Tenang aja kalau belum ada persiapan, Zenius punya solusinya untuk elo. Penasaran kan program belajar apa untuk mengejar SIMAK UI Zenius. Gue kasih rekomendasi nih. Live Ultima Bootcamp dan Ultima Bootcamp UM cocok banget nih buat elo yang mau persiapan SIMAK UI. Di situ bakal ada materi dan juga Live Class yang bantu elo banget untuk menghadapi UTBK dan ujian mandiri. Buat elo yang mau mulai persiapan ujian masuk PTN mulai dari sekarang, elo bisa klik banner di bawah ini ya! Yuk, langganan Zenius sekarang! Wahh… gak kerasa nih, elo udah liat kumpulan contoh soal dan pembahasan SIMAK UI Matematika dasar dan Matematika IPA. Kira-kira udah kebayang belom, gimana nanti elo harus jawab soal-soal Matematika SIMAK UI waktu ujian berlangsung? Semoga lancar deh! Inget persiapan dari sekarang, biar nanti waktu ujian langsung sat set sat set kelar… Elo juga bisa akses soal SIMAK UI Matematika dan pelajaran lainnya langsung di web resmi SIMAK UI. Semangat kelas 12! Baca Juga Panduan SIMAK UI Info Pendaftaran SIMAK UI Strategi dan Tips Lolos SIMAK UI Originally published December 1, 2021 Updated by Ni Kadek Namiani Tiara Putri – SEO Writer Intern Zenius & Silvia Dwi

EKSPONEN|| LATIHAN SOAL SIMAK UI || PEMBAHASAN SOAL MATEMATIKA DASAR SIMAK UIHallo Kawan BIMA..Video ini berisi soal ali SIMAK UI Matematika Dasar yang diba

Soal yang Akan Dibahas Jika $ p $ dan $ q $ adalah akar-akar persamaan $ x^2 + x - 4 = 0 $ , maka nilai $ 5p^2 + 4q^2 + p $ adalah .... A. $ 20 \, $ B. $ 28 \, $ C. $ 32 \, $ D. $ 40 \, $ E. $ 44 $ $\spadesuit $ Konsep Dasar *. Persamaan kuadrat $ ax^2 + bx + c = 0 $ memiliki akar-akar $ x_1 $ dan $ x_2 $ -. Operasi akar-akar $ x_1 + x_2 = \frac{-b}{a} $ dan $ x_1 . x_2 = \frac{c}{a} $ -. Rumus bantu $ x_1^2 + x_2^2 = x_1+x_2^2 - $ -. Akar-akar persamaannya boleh disubstitusikan ke persamaan. $\clubsuit $ Pembahasan *. $ p $ dan $ q $ akar-akar persamaan $ x^2 + x - 4 = 0 $ *. substitusikan $ x = p $ ke persamaannya $\begin{align} x = p \rightarrow x^2 + x - 4 & = 0 \\ p^2 + p - 4 & = 0 \\ p^2 + p & = 4 \end{align} $ *. Operasi akar-akarnya $\begin{align} p+q & = \frac{-b}{a} = \frac{-1}{1} = -1 \\ & = \frac{c}{a} = \frac{-4}{1} = -4 \\ p^2 + q^2 & = p+q^2 - 2pq \\ & = -1^2 - 2. -4 \\ & = 1 + 8 = 9 \end{align} $ *. Menentukan hasil $ 5p^2 + 4q^2 + p $ $\begin{align} 5p^2 + 4q^2 + p & = 4p^2 + p^2 + 4q^2 + p \\ & = 4p^2 + 4q^2 + p^2 + p \\ & = 4p^2 + q^2 + p^2 + p \\ & = 49 + 4 \\ & = 36 + 4 = 40 \end{align} $ Jadi, nilai $ 5p^2 + 4q^2 + p = 40 . \, \heartsuit $ PembahasanSoal SIMAK UI 2018 Matematika Dasar Kode 638 A. { x ∈ R: x ≤ − 2 atau 2 ≤ x ≤ 13 6 }. B. { x ∈ R: x ≤ − 2 atau 2 ≤ x }. C. { x ∈ R: − 2 ≤ x ≤ 13 6 }. D. { x ∈ R: x ≤ 13 6 }. E. { x ∈ R: 2 ≤ x ≤ 13 6 }. Dari i) dan ii) diperoleh himpunan penyelesaiannya adalah { x ∈ R: x ≤ − 2 atau 2 ≤
- Download Soal dan Pembahasan SIMAK UI 2018. Hai sobat skul, kali ini kami akan membagikan sebuah artikel yang kami harap bisa bermanfaat bagi kalian semua yang datang ke blog ini. Disini kami akan membagikan soal dan pembahasan SIMAK UI tahun 2018 dimana nantinya kami akan membagikan untuk tahun-tahun sebelumnya dan kami juga akan membagikan kumpulan soal dan pembahasan dari Ujian Mandiri dari semua universitas yang ada di Indonesia. Mohon maaf sebelumnya karena tidak lengkapnya baik soal dan pembahasan dari artikel yang kami buat kali ini, semoga dalam waktu dekat ini kami bisa melengkapi kekurangan tersebut. Untuk melihat lebih banyak lagi soal dan pembahasan SIMAK UI bisa lihat disini SIMAK UI adalah ujian seleksi terpadu masuik UI yang diselenggarakan UI bagi calon mahasiswa yang ingin melanjutkan pendidikan di UI. Ujian ini dilakukan untuk seluruh program pendidikan yang ada di UI, mulai program vokasi D3, Sarjana Kelas Paralel, Profesi, Spesialis, Magister, dan Doktor. Sedangkan Ujian SIMAK Sarjana Kelas Internasional dan sarjana Ekstensi dilaksanakan pada waktu yang berbeda. Ujian ini dilakukan secara serentak di seluruh Indonesia Jakarta, Tangerang, Tangsel, Bekasi, Depok, Bogor, Bandung, Jogjakarta, Surabaya, Padang, Medan, Palembang, dan Makassar yang artinya untuk mengikuti seleksi ini kita tidak harus pergi ke UI itu sendiri. SIMAK UI merupakan sebuah Ujian Mandiri UM singkatan dari Seleksi Masuk UI yang dilaksanakan oleh Universitas Indonesia. SIMAK UI merupakan salah satu jalur masuk Universitas Indonesia. Bagi kalian yang tidak mendapatkan kesempatan melalui jalur SNMPTN dan masih bimbang dengan hasil UTBK, kalian bisa mengikuti SIMAK UI ini. Soal yang nantinya diujikan dalam SIMAK UI bisa dibilang mirip dengan soal pada SBMPTN. Oleh karena itu agar kita bisa lolos SIMAK UI, alangkah baiknya kita sering melakukan latihan soal dari SIMAK UI tahun sebelumnya dan bila perlu, kita juga bisa mengasah kemampuan kita dengan berlatih soal SBMPTN tahun sebelumnya agar persiapan kita semakin matang. Pembagian Kelompok SIMAK UI Adapun kelompok ujian dalam SIMAK UI dibagi menjadi 3 kelompok diantaranya Kelompok Ujian Sains dan Teknologi Saintek Kelompok Ujian Siosial dan Humaniora Soshum Kelompok Ujian Campuran Saintek dan Soshum Peserta bisa mengikuti SIMAK UI tersebut dengan memilih salah satu kelompok baik Saintek, Soshum, maupun Campuran. Materi yang diujikan pada SIMAK UI Adapun materi tertulis yang harus di kerjakan bagi para peserta yaitu soal berdasarkan pembagian kelompoknya diantaranya adalah Kemampuan Dasar KD terdiri dari Matematika Dasar, Bahasa Indonesia, dan Bahasa Inggris Kemampuan IPA KA terdiri dari Matematika IPA, Biologi, Fisika, dan Kimia Kemampuan IPS KS terdiri dari Sosiologi, Sejarah, Geografi, dan Ekonomi Berikut kami paparkan soal dan pembahasan SIMAK UI tahun 2018. Semoga artikel ini bisa membantu kalian dalam pemahaman materi sebelum melakukan ujian dalam waktu dekat ini. Download Soal & Pembahasan SIMAK UI 2018 Tanpa basa-basi lebih lama lagi, berikut kami paparkan soal dan pembahasan SIMAK UI tahun 2018 1. Kemampuan Dasar KD 3. Kemampuan IPS KS Soal 1 Download Soal 2 Download Soal 3 Download Soal 4 Download Soal 5 Download Itu saja yang bisa kami sampaikan di artikel kali ini, semoga artikel ini bisa membantu kalian semua yang nantinya akan menghadapi SIMAK UI dalam waktu dekat ini. Semoga kalian bisa memperoleh hasil yang maksimal dan bisa diterima dikampus idaman kalian. Semoga blog ini bisa menyajikan lebih banyak manfaat untuk kalian nantinya. Sedikit juga harapan dari kami, semoga blog ini bisa konsisten terus menghadirkan sesuatu yang bermanfaat bagi kalian semua, sehingga bisa turut andil dalam memajukan pendidikan diIndonesia. GOOD LUCK!!! Untuk meningkatkan kenyamanan pengunjung, mohon beritahu kami bila ada link yang error dikolom komentar. Baca Download Soal dan Pembahasan SIMAK UI 2017 Download Soal dan Pembahasan SIMAK UI 2016 Download Soal dan Pembahasan SIMAK UI 2015
PembahasanSIMAK UI 2018 Matematika Dasar | Part 1 : Menyelesaikan Bentuk Akar dan Persamaan Linear 10m 31s Pembahasan SIMAK UI 2018 Matematika Dasar | Part 2 : Persamaan Logaritma
SIMAK UI 2016-Saya kehabisan kata-kata nih buat pengantar postingan ini, hehehe....! So... To the point aja ya..! Berikut ini adalah Soal dan Pembahasan Matematika Dasar TKPA SIMAK UI 2016, seperti biasa b4ngrp selalu menyertakan soal dalam bentuk file yang dapat di download dan diprint sepuasnya. Ingat, berusahalah terlebih dahulu menjawab soal-soal tersebut dengan mandiri. Abis tuh bolehlah di intip-intip pembahasannya disini untuk mencocokkan jawaban kalian ya..! Oh iya, jika pada pembahasan ini ada yang kurang tepat mohon dikoreksi melalui kolom komentar ya...! Dan yang paling penting supaya b4ngrp tetap semangat mengembangkan blog ini, mohon bantuannya untuk share postingan ini ya..! Terima kasih. Matematika Dasar SIMAK UI 2016 No. 1 Bentuk sederhana dari ekspresi $\sqrt[3]{4}{{\left \sqrt[3]{\frac{9}{16}}-\sqrt[3]{\frac{3}{16}}+\sqrt[3]{\frac{1}{16}} \right}^{-1}}$ adalah … A. $\sqrt[3]{4}+1$ B. $\frac{\sqrt[3]{4}+1}{\sqrt[3]{3}}$ C . $\sqrt[3]{3}+1$ D. $\frac{\sqrt[3]{3}+1}{\sqrt[3]{4}}$ E. $\frac{\sqrt[3]{3}+1}{4}$ Pembahasan $\sqrt[3]{4}{{\left \sqrt[3]{\frac{9}{16}}-\sqrt[3]{\frac{3}{16}}+\sqrt[3]{\frac{1}{16}} \right}^{-1}}$ = $\frac{\sqrt[3]{4}}{\sqrt[3]{\frac{9}{16}}-\sqrt[3]{\frac{3}{16}}+\sqrt[3]{\frac{1}{16}}}$ = $\frac{\sqrt[3]{4}}{\frac{\sqrt[3]{9}-\sqrt[3]{3}+\sqrt[3]{1}}{\sqrt[3]{16}}}$ = $\sqrt[3]{4}\times \frac{\sqrt[3]{16}}{\sqrt[3]{9}-\sqrt[3]{3}+\sqrt[3]{1}}$ = $\frac{\sqrt[3]{64}}{\sqrt[3]{9}-\sqrt[3]{3}+\sqrt[3]{1}}$ = $\frac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}\times \frac{\sqrt[3]{3}+1}{\sqrt[3]{3}+1}$ = $\frac{4\left \sqrt[3]{3}+1 \right}{3+\sqrt[3]{9}-\sqrt[3]{9}-\sqrt[3]{3}+\sqrt[3]{3}+1}$ = $\frac{4\left \sqrt[3]{3}+1 \right}{4}$ = $\sqrt[3]{3}+1$ Jawaban C Matematika Dasar SIMAK UI 2016 No. 2 Jika $a$, $b$, dan $x$ bilangan real positif yang berbeda dengan 1 dan ${}^{a}\log x$ bilangan rasional, maka $9{{\left {}^{a}\log x \right}^{2}}+8{{\left {}^{b}\log x \right}^{2}}=18\left {}^{a}\log x \right\left {}^{b}\log x \right$ berlaku … A. untuk semua nilai $a$, $b$, dan $x$. B. jika dan hanya jika ${{a}^{2}}={{b}^{3}}$. C. jika dan hanya jika ${{a}^{3}}={{b}^{4}}$ D. jika dan hanya jika ${{a}^{3}}={{b}^{2}}$ atau ${{a}^{3}}={{b}^{4}}$. E. jika dan hanya jika ${{a}^{2}}={{b}^{3}}$ atau ${{a}^{4}}={{b}^{3}}$. Pembahasan Misal ${}^{a}\log x=p$ dan ${}^{b}\log x=q$ maka $9{{\left {}^{a}\log x \right}^{2}}+8{{\left {}^{b}\log x \right}^{2}}=18\left {}^{a}\log x \right\left {}^{b}\log x \right$ $9{{p}^{2}}+8{{q}^{2}}=18pq$ $9{{p}^{2}}-18pq+8{{q}^{2}}=0$ $9{{p}^{2}}-18pq+8{{q}^{2}}=0$ $3p-2q3p-4q=0$ $3p=2q$ atau $3p=4q$ * Untuk $3p=2q$ $3.{}^{a}\log x=2.{}^{b}\log x$ ${}^{{{a}^{\frac{1}{3}}}}\log x={}^{{{b}^{\frac{1}{2}}}}\log x$ ${{a}^{\frac{1}{3}}}={{b}^{\frac{1}{2}}}$ ${{\left {{a}^{\frac{1}{3}}} \right}^{6}}={{\left {{b}^{\frac{1}{2}}} \right}^{6}}\Leftrightarrow {{a}^{2}}={{b}^{3}}$ * Untuk $3p=4q$ $3.{}^{a}\log x=4.{}^{b}\log x$ ${}^{{{a}^{\frac{1}{3}}}}\log x={}^{{{b}^{\frac{1}{4}}}}\log x$ ${{a}^{\frac{1}{3}}}={{b}^{\frac{1}{4}}}$ ${{\left {{a}^{\frac{1}{3}}} \right}^{12}}={{\left {{b}^{\frac{1}{4}}} \right}^{12}}\Leftrightarrow {{a}^{4}}={{b}^{3}}$ Jawaban E Matematika Dasar SIMAK UI 2016 No. 3 Jika akar ${{x}^{2}}+ax+b=0$ adalah $\frac{1}{3}$ kali akar ${{x}^{2}}+cx+a=0$ dengan $a,b,c\ne 0$, maka $\frac{a+c}{b}$ = … A. $\frac{10}{27}$ B. $\frac{28}{9}$ C. 30 D. 36 E. 40 Pembahasan ${{x}^{2}}+ax+b=0$ akar-akarnya ${{x}_{1}}$ dan ${{x}_{2}}$ maka ${{x}_{1}}+{{x}_{2}}=-a$ ${{x}_{1}}.{{x}_{2}}=b$ ${{x}^{2}}+cx+a=0$ akar-akarnya ${{x}_{1}}$ dan ${{x}_{2}}$ maka ${{x}_{3}}+{{x}_{4}}=-c$ ${{x}_{3}}.{{x}_{4}}=a$ akar ${{x}^{2}}+ax+b=0$ adalah $\frac{1}{3}$ kali akar ${{x}^{2}}+cx+a=0$ maka ${{x}_{1}}=\frac{1}{3}{{x}_{3}}$ dan ${{x}_{2}}=\frac{1}{3}{{x}_{4}}$ ${{x}_{1}}+{{x}_{2}}=\frac{1}{3}{{x}_{3}}+\frac{1}{3}{{x}_{4}}$ ${{x}_{1}}+{{x}_{2}}=\frac{1}{3}{{x}_{3}}+{{x}_{4}}$ $-a=\frac{1}{3}-c\Leftrightarrow c=3a$ ${{x}_{1}}.{{x}_{2}}=\frac{1}{3}{{x}_{3}}.\frac{1}{3}{{x}_{4}}$ ${{x}_{1}}.{{x}_{2}}=\frac{1}{9}{{x}_{3}}.{{x}_{4}}$ $b=\frac{1}{9}a\Leftrightarrow a=9b$ $\frac{a+c}{b}=\frac{9b+3a}{b}=\frac{9b+ Jawaban D Matematika Dasar SIMAK UI 2016 No. 4 Diketahui bahwa $c$ dan $d$ solusi ${{x}^{2}}+ax+b=0$, $a$ dan $b$ solusi ${{x}^{2}}+cx+d=0$ dengan nilai $a$, $b$, $c$, dan $d$ bilangan real bukan nol. Nilai $a+b+c+d$ = … A. -2 B. -1 C. 1 D. 2 E. 3 Pembahasan ${{x}^{2}}+ax+b=0$ dan ${{x}^{2}}+cx+d=0$ maka ${{x}^{2}}+ax+b={{x}^{2}}+cx+d$ $ax+b=cx+d$ $a=c$ dan $b=d$ ${{x}^{2}}+ax+b=0$ akar-akarnya c dan d maka $c+d=-a$ $a+d=-a\Leftrightarrow d=-2a$ $ c=1=a$ $d=-2a\Leftrightarrow d= b=d=-2$ $a+b+c+d=1+-2+1+-2=-2$ Jawaban A Matematika Dasar SIMAK UI 2016 No. 5 Jika $x$ memenuhi $\frac{-3x+1}{{{x}^{2}}-6x-16}\ge 0$, maka nilai $y=-\frac{2}{x}+1$ terletak pada …. A. $-5\le y 2$ C. $y\le -3$ atau $y > \frac{3}{4}$ D. $-5\le y 0$ maka $x=\frac{2}{3}$ substitusi ke $4-4r={{x}^{2}}$ $4-4r={{\left \frac{2}{3} \right}^{2}}$ $-4r=\frac{4}{9}-4$ $-4r=\frac{-32}{9}\Leftrightarrow r=\frac{8}{9}$ L = 2 x luas lingkaran r = $\frac{8}{9}$ + luas lingkaran r = 1. $L=2\pi {{\left \frac{8}{9} \right}^{2}}+\pi {{.1}^{2}}$ $L=\frac{128}{81}\pi +\pi $ $L=\frac{209}{81}\pi $ Jawaban D Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15. Matematika Dasar SIMAK UI 2016 No. 13 Diketahui $fx={{x}^{2}}+3$ dan $gx=\sqrt{x-3}$. Pernyataan berikut yang BENAR adalah … 1 $g$ merupakan invers dari $f$ 2 daerah hasil dari $f\circ g$ adalah himpunan bilangan real. 3 daerah asal dari $f$ sama dengan daerah hasil dari $g$. 4 daerah asal dari $g\circ f$ sama dengan daerah asal dari $f$. Pembahasan Pernyataan 1 $fx={{x}^{2}}+3$ ${{x}^{2}}+3=y$ ${{x}^{2}}=y-3$ $x=\sqrt{y-3}$ ${{f}^{-1}}x=\sqrt{x-3}=gx$. Pernyataan 1 benar. Pernyataan 2 $f\circ g={{\left \sqrt{x-3} \right}^{2}}+3=x$ maka daerah hasilnya adalah himpunan bilangan real. Pernyataan 2 benar. Pernyataan 3 $Df=\{xx\in R\}$ dan $Rg=\{xx\in R\}$. Pernyataan 3 benar. Pernyataan 4 $g\circ f=\sqrt{{{x}^{2}}+3-3}=x$ maka $Dg\circ f=\{xx\in R\}$ dan $Df=\{xx\in R\}$. Pernyataan 4 benar. Jawaban E 1, 2, 3, 4 benar Matematika Dasar SIMAK UI 2016 No. 14 Jika $fx=\left\{ \begin{matrix} 2-{{x}^{2}}, & -3\le x\le 0 \\ {{x}^{2}}+2, & 0\le x\le 3 \\ \end{matrix} \right.$, maka … 1 $f'-2+f'2=8$ 2 $fx$ simetris terhadap sumbu-y 3 persamaan garis singgung di titik $P-2,-2$ dan $Q2,6$ adalah sejajar. 4 $fx={{f}^{-1}}x$ Pembahasan Pernyataan 1 Untuk $x=-2$ maka $fx=2-{{x}^{2}}$ $f'x=-2x\Leftrightarrow f'-2=4$ Untuk $x=2$ maka $fx={{x}^{2}}+2$ $f'x=2x\Leftrightarrow f'2=4$ $f'-2+f'2=4+4=8$. Pernyataan 1 benar. Pernyataan 2 $fx=a{{x}^{2}}+bx+c$ simetri terhadap sumbu-Y jika $b=0$. $fx=2-{{x}^{2}}$ dan $fx={{x}^{2}}+2$ memiliki $b=0$ maka $fx$ simetri terhadap sumbu-Y. Pernyataan 2 benar. Pernyataan 3 Persamaan garis singgung di titik $P-2,-2$ adalah $y+2=f'-2.x+2$ $y+2=4x+2$ $y=4x+6\Rightarrow {{m}_{1}}=4$ Persamaan garis singgung di titik $Q2,6$ adalah $y-6=f'2.x-2$ $y-6=4x-2$ $y=4x-2\Rightarrow {{m}_{2}}=4$ ${{m}_{1}}={{m}_{2}}=4$ maka kedua garis singgung sejajar. Pernyataan 3 benar. Pernyataan 4 $fx=2-{{x}^{2}}\Leftrightarrow {{f}^{-1}}x=\sqrt{2-x}$ $fx={{x}^{2}}+2\Leftrightarrow {{f}^{-1}}x=\sqrt{x-2}$ Maka $fx\ne {{f}^{-1}}x$. Pernyataan 4 salah. Jawaban A 1, 2, dan 3 benar. Matematika Dasar SIMAK UI 2016 No. 15 Jika data pada tabel menunjukkan nilai rata-rata ujian siswa di sekolah A dan B, maka … 1 siswa laki-laki di sekolah A lebih banyak daripada siswa perempuan di sekolah tersebut. 2 siswa laki-laki di sekolah B lebih banyak daripada siswa perempuan di sekolah tersebut. 3 siswa laki-laki di sekolah A lebih banyak daripada siswa laki-laki di sekolah B. 4 nilai rata-rata ujian siswa perempuan di sekolah A dan B adalah 84. Pembahasan Pernyataan 1 Sekolah A, misalkan ${{n}_{1}}$ = banyak siswa laki-laki di sekolah A ${{n}_{2}}$ = banyak siswa perempuan di sekolah A ${{\bar{x}}_{1}}=71$, ${{\bar{x}}_{2}}=76$, ${{\bar{x}}_{1,2}}=74$ ${{\bar{x}}_{1,2}}=\frac{{{n}_{1}}.{{{\bar{x}}}_{1}}+{{n}_{2}}.{{{\bar{x}}}_{2}}}{{{n}_{1}}+{{n}_{2}}}$ $74=\frac{71{{n}_{1}}+76{{n}_{2}}}{{{n}_{1}}+{{n}_{2}}}$ $74{{n}_{1}}+74{{n}_{2}}=71{{n}_{1}}+76{{n}_{2}}$ $3{{n}_{1}}=2{{n}_{2}}\Leftrightarrow \frac{{{n}_{1}}}{{{n}_{2}}}=\frac{2}{3}$ Artinya, siswa laki-laki di sekolah A lebih sedikit daripada siswa perempuan di sekolah tersebut. Pernyataan 1 salah. Pernyataan 2 Sekolah B, misalkan ${{n}_{3}}$ = banyak siswa laki-laki di sekolah B ${{n}_{4}}$ = banyak siswa perempuan di sekolah B ${{\bar{x}}_{3}}=81$, ${{\bar{x}}_{4}}=90$, ${{\bar{x}}_{3,4}}=84$ ${{\bar{x}}_{3,4}}=\frac{{{n}_{3}}.{{{\bar{x}}}_{3}}+{{n}_{4}}.{{{\bar{x}}}_{4}}}{{{n}_{3}}+{{n}_{4}}}$ $84=\frac{81{{n}_{3}}+90{{n}_{4}}}{{{n}_{3}}+{{n}_{4}}}$ $84{{n}_{3}}+84{{n}_{4}}=81{{n}_{3}}+90{{n}_{4}}$ $3{{n}_{3}}=6{{n}_{4}}\Leftrightarrow \frac{{{n}_{3}}}{{{n}_{4}}}=\frac{2}{1}$ Artinya, siswa laki-laki di sekolah B lebih banyak daripada siswa perempuan di sekolah tersebut. Pernyataan 2 benar. Pernyataan 3 Siswa laki-laki di sekolah A dan B ${{\bar{x}}_{1}}=71$, ${{\bar{x}}_{3}}=81$, ${{\bar{x}}_{1,3}}=79$ ${{\bar{x}}_{1,3}}=\frac{{{n}_{1}}.{{{\bar{x}}}_{1}}+{{n}_{3}}.{{{\bar{x}}}_{3}}}{{{n}_{1}}+{{n}_{3}}}$ $79=\frac{71{{n}_{1}}+81{{n}_{3}}}{{{n}_{1}}+{{n}_{3}}}$ $79{{n}_{1}}+79{{n}_{3}}=71{{n}_{1}}+81{{n}_{3}}$ $8{{n}_{1}}=2{{n}_{3}}\Leftrightarrow \frac{{{n}_{1}}}{{{n}_{3}}}=\frac{1}{4}$ Artinya, siswa laki-laki di sekolah A lebih sedikit daripada siswa laki-laki di sekolah B. Pernyataan 3 salah. Pernyataan 4 Siswa perempuan di sekolah A dan B Ingat $\frac{{{n}_{1}}}{{{n}_{2}}}=\frac{2}{3}\Leftrightarrow {{n}_{2}}=\frac{3{{n}_{1}}}{2}$ $\frac{{{n}_{3}}}{{{n}_{4}}}=\frac{2}{1}\Leftrightarrow {{n}_{4}}=\frac{{{n}_{3}}}{2}$ $\frac{{{n}_{1}}}{{{n}_{3}}}=\frac{1}{4}\Leftrightarrow {{n}_{3}}=4{{n}_{1}}$ ${{\bar{x}}_{2}}=76$, ${{\bar{x}}_{4}}=90$, ${{\bar{x}}_{2,4}}=x$ ${{\bar{x}}_{2,4}}=\frac{{{n}_{2}}.{{{\bar{x}}}_{2}}+{{n}_{4}}.{{{\bar{x}}}_{4}}}{{{n}_{2}}+{{n}_{4}}}$ $x=\frac{\frac{3{{n}_{1}}}{2}.76+\frac{{{n}_{3}}}{2}.90}{\frac{3{{n}_{1}}}{2}+\frac{{{n}_{3}}}{2}}$ $x=\frac{114{{n}_{1}}+45{{n}_{3}}}{\frac{3{{n}_{1}}+{{n}_{3}}}{2}}$ $x=\frac{2114{{n}_{1}}+45{{n}_{3}}}{3{{n}_{1}}+{{n}_{3}}}$ $x=\frac{2114{{n}_{1}}+ $x=\frac{588{{n}_{1}}}{7{{n}_{1}}}=84$ Jadi, nilai rata-rata ujian siswa perempuan di sekolah A dan B adalah 84. Pernyataan 4 benar. Jawaban C 2 dan 4 benar Baca juga Soal dan Pembahasan Matematika Dasar SIMAK UI 2017. Soal dan Pembahasan Matematika Dasar SIMAK UI 2015. Soal dan Pembahasan Matematika Dasar SIMAK UI 2014. Soal dan Pembahasan Matematika Dasar SIMAK UI 2013. Semoga postingan Pembahasan Soal SIMAK UI 2016 Matematika Dasar ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih. PembahasanKomposisi Fungsi Simak UI 2018 Matematika Dasar kode 632 Soal yang Akan Dibahas Gunakan petunjuk C. Diketahui fungsi f ( x) adalah fungsi linear dan g ( x) = 2 x + 1 x + 1 . Jika ( g ∘ f) ( x) = 3 + 1 2 x + 1 selengkapnya
Soal yang Akan Dibahas Gunakan petunjuk C. Jika $ fx = \frac{ax+b}{x^2 + 1} $ , $ f0 = f^\prime 0 $ , dan $ f^\prime -1 = 1 $ , maka .... 1. $ a + b = 4 $ 2. $ f1 = 2 $ 3. $ f-2 = -\frac{2}{5} $ 4. $ y = x + 1 \, $ adalah persamaan garis singgung di $ x = -1 $ $\spadesuit $ Konsep Dasar *. Turunan fungsi aljabar $ y = ax^n \rightarrow y^\prime = nax^{n-1} $ $ y = \frac{U}{V} \rightarrow y^\prime = \frac{U^\prime . V - U . V^\prime}{V^2} $ *. Persamaan garis kurva $ y = fx $ di titik $ x_1,y_1 $ $ y - y_1 = mx-x_1 $ dengan $ m = f^\prime x_1 $ $\clubsuit $ Pembahasan *. Diketahuui $ fx = \frac{ax+b}{x^2 + 1} $ , $ f0 = f^\prime 0 $ , dan $ f^\prime -1 = 1 $ *. Menentukan $ f^\prime x $ $\begin{align} fx & = \frac{ax+b}{x^2 + 1} = \frac{U}{V} \\ U & = ax + b \rightarrow U^\prime = a \\ V & = x^2 + 1 \rightarrow V^\prime = 2x \\ f ^\prime x & = \frac{U^\prime . V - U . V^\prime}{V^2} \\ & = \frac{a.x^2 + 1 - ax+b.2x}{x^2 + 1^2} \\ & = \frac{ax^2 + a - 2ax^2 - 2bx}{x^2 + 1^2} \\ & = \frac{-ax^2 - 2bx + a}{x^2 + 1^2} \end{align} $ *. Menyusun persamaan pertama $\begin{align} f0 & = f^\prime 0 \\ \frac{ + 1} & = \frac{ - + a}{0^2 + 1^2} \\ \frac{ b}{ 1} & = \frac{a}{1} \\ a & = b \, \, \, \, \, \, \, \text{....i} \end{align} $ *. Menyusun persamaan kedua $\begin{align} f^\prime -1 & = 1 \\ \frac{-a.-1^2 - 2b.-1 + a}{-1^2 + 1^2} & = 1 \\ \frac{-a + 2b + a}{4} & = 1 \\ 2b & = 4 \\ b & = 2 \end{align} $ dari persi $ a = b = 2 $ *. Kita cek setiap pernyataan -. Pernyataan 1. $ $ a + b = 4 $ \, $ ? $ a + b = 2 + 2 = 4 $ Pernyataan 1 BENAR. -. Pernyataan 2. $ f1 = 2 $ ? $ fx = \frac{ax+b}{x^2 + 1} $ $ f1 = \frac{ + 1} = \frac{4}{2} = 2 $ Pernyataan 2 BENAR. -. Pernyataan 3. $ f-2 = -\frac{2}{5} $ ? $ fx = \frac{ax+b}{x^2 + 1} $ $ f-2 = \frac{2.-2+2}{-2^2 + 1} = \frac{-2}{5} $ Pernyataan 3 BENAR. -. Pernyataan 4. $ y = x + 1 \, $ adalah persamaan garis singgung di $ x = -1 $ ? Gradien $ m = f^\prime -1 = 1 $ diketahui Nilai $ y_1 = f-1 = \frac{2.-1 + 2}{-1^2 + 1} = \frac{0}{2} = 0 $ Menyusun garis singgung di $ x_1,y_1 = -1, 0 $ dan $ m = 1 $ $\begin{align} y - y_1 & = mx-x_1 \\ y - 0 & = 1 x - -1 \\ y - 0 & = x + 1 \\ y & = x + 1 \end{align} $ Garis singgungnya adalah $ y = x + 1 $ Pernyataan 4 BENAR. Sehingga semua pernyataan BENAR, jawabannya E. Jadi, semuanya BENAR $ . \, \heartsuit $
. 356 494 201 215 461 424 53 183

pembahasan simak ui 2018 matematika dasar